If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-10x-1=0
a = 16; b = -10; c = -1;
Δ = b2-4ac
Δ = -102-4·16·(-1)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{41}}{2*16}=\frac{10-2\sqrt{41}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{41}}{2*16}=\frac{10+2\sqrt{41}}{32} $
| 211.5=32.5t | | 12x^2+61x+77=0 | | 4n+16=6n | | 3x+1/2=6x+1/4 | | 8/x=12/16 | | 8(7x+5)=-24-8x | | p=-05(37)+20 | | 2x+14=43 | | 3.24x+8.37x-8.09=7.87 | | 5+|2y+1|=12 | | 3k/2=18 | | p=-0.5(90)+20 | | 4(n-3)=24-8n | | -5(1+4k)+6(1-2k)=33 | | 4x-6x+7=0 | | (3-x)/(3)+2=3x | | 5/(3x+15)=0 | | p=-0.5(36)+20 | | 18+3b=-2(8b+2)+3 | | 5÷(3x+15)=0 | | 4f+13=7f-2 | | 7x-14=2x=11 | | 2x^+4x+12=0 | | 5x+16=3x-10 | | x+9/12=5/2 | | 110=-7+9x | | x/3x+11=0 | | p=-0.5(75)+20 | | x=-10x+24 | | (4x+10)+(x-20)=90 | | p=0.5(55)+20 | | X^2+25+10x=0 |